Exercise 64

Evaluate $\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$.

Solution

Plugging in $x=2$ doesn't work because the denominator becomes zero, using the Quotient Law doesn't work because the limit of the denominator as $x \rightarrow 2$ is zero, there doesn't seem to be a way to cancel out the denominator by factoring the numerator, and multiplying the numerator and denominator by 1 doesn't simplify the function. What's next is to look for a substitution.

$$
\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}=\lim _{x \rightarrow 2} \frac{\sqrt{3+(3-x)}-2}{\sqrt{3-x}-1}
$$

Let $u=\sqrt{3-x}$. Then $u^{2}=3-x$. Note that as $x \rightarrow 2, u \rightarrow 1$.

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} & =\lim _{u \rightarrow 1} \frac{\sqrt{3+u^{2}}-2}{u-1} \\
& =\lim _{u \rightarrow 1} \frac{\sqrt{3+u^{2}}-2}{u-1} \times \frac{\sqrt{3+u^{2}}+2}{\sqrt{3+u^{2}}+2} \\
& =\lim _{u \rightarrow 1} \frac{\left(\sqrt{3+u^{2}}-2\right)\left(\sqrt{3+u^{2}}+2\right)}{(u-1)\left(\sqrt{3+u^{2}}+2\right)} \\
& =\lim _{u \rightarrow 1} \frac{\left(3+u^{2}\right)-4}{(u-1)\left(\sqrt{3+u^{2}}+2\right)} \\
& =\lim _{u \rightarrow 1} \frac{u^{2}-1}{(u-1)\left(\sqrt{3+u^{2}}+2\right)} \\
& =\lim _{u \rightarrow 1} \frac{(u+1)(u-1)}{(u-1)\left(\sqrt{3+u^{2}}+2\right)} \\
& =\lim _{u \rightarrow 1} \frac{u+1}{\sqrt{3+u^{2}}+2} \\
& =\frac{1+1}{\sqrt{3+1^{2}+2}} \\
& =\frac{1}{2}
\end{aligned}
$$

